Product Reliability Webinar: Combined Environmental Conditions Testing
• Why and How of Product Reliability Testing
• Defining your product’s environment
 • What is unique?
• Combined Environment Methodologies
 • Background of the test inputs
 • Test parameters and standards
 • Test to level vs. test to failure
 • Typical results
• Summary
Why Test?

- Reliability: Ability of the product to meet design criteria
- Products will see many hazards throughout their life
 - Indoor/outdoor environment
 - Rough usage and handling
 - Operating conditions
 - Shipment and installation
- Regulatory Requirements
- Customer Satisfaction, Warranty, Liability
Things to consider prior to testing

- Design for reliability
 - Reference existing solutions
 - Thermal expansion/contraction
 - Material compatibility
 - Hardware backout (torque/threadlock)
 - Production process control
- Regulatory Requirements
 - Safety (optical, noise, mechanical, electrical, fire)
 - Product effectiveness
Establishing the Test Plan

- Design of Experiment (DoE)
 - Characterize environments EUT will see
 - Define test inputs to cover all environments
 - Consider **Combined Environments**
 - Remember shipping / distribution (severe!)
 - Determine acceptance criteria / inspections
 - Quantitative when possible
 - Cosmetic, functional, safety
- Start small
 - First: Test temperature and basic mechanical vibration
 - Second: Comprehensive testing (single environment)
 - Third: **Combined Environment Testing (as applicable)**
Questions?
Combined Environment Test Inputs

- Every product will see different environments
 - Sample EUT: Ruggedized Laptop Computer
- Test inputs discussed
 - Temperature + Vibration
 - Impact Testing + Temperature Extremes
 - Freefall Drop Testing + Temperature Extremes
 - Mechanical Cycling + Temperature Extremes
 - Temperature + Pressure
 - Fluid Submersion + Temperature + Pressure
 - Thermal Shock by Water Spray
Basic Temperature Testing

• Background
• Basic tests
 • Storage, shipment
 • Operating
 • Heat rejection, cyclic on-off, temp rise
 • Varied electrical inputs
• Test profiles
 • Static, cyclic and shock profiles
 • Operational stress tests ‘4 corners’
 • ASTM D4332, IEC 60601-1, IEC 60068-2-X, MIL-STD-810
• Common issues / results
 • Thermal expansion issues
 • Exceeding material limits, mechanical failures
• Background of “AGREE” Testing
• Typical Test
 • Cyclic functional operation
 • Temperature by application
 • X, Y, Z axis in single direction
 • Random frequency domain by application
 • Transport (1Hz – 300Hz)
 • Bare Product (5Hz – 2,000Hz)
• Test Standards
 • MIL-STD-883, MIL-HDBK-781
• Variations of Testing
• Common Issues / Results
 • Unsupported / surface mount component failure
 • Permanent failure to operate correctly
Impact Testing + Extreme Temperatures

• Background
• Typical Tests
 • Condition EUT or test at temperature
 • Steel ball
 • Simulates many sources of impacts
 • Variables are ball diameter / drop height
 • Hail
 • Terrestrial at terminal velocity (in air)
• Test Standards
 • IEC 60601-1, IEC 60950-1, UL 2218
• Common Issues / Results
 • Mechanical damage, cosmetic damage
Freefall Drop Testing + Temperature Extremes

- **Background / Defining the environment**
 - Cold conditioning is usually most severe
 - Waist-height drop for most handheld products

- **Test parameters**
 - Pre-conditioning (-40°C to +60°C are common)
 - Number of drops
 - Face, edge, corner
 - Height and impact surface (depends on weight)

- **Test Standards**
 - IEC 60601-1, IEC 60068-2-31, MIL-STD-810

- **Common Issues / Results**
 - Cracking, breakage, cosmetic damage
• Background
• Components to test
 • Hinges, switches, mechanical buttons
 • Connector insertion/removal
 • Touch screens
• Typical Test
 • Define possible operating temperatures
 • Define number of cycles
 • Define cycle force, speed, duration
 • Inspect periodically
• Test Standards / Norms
 • Various
• Common Issues / Results
 • Quick wear out, inelastic deformation
 • Change in actuation or insertion/removal force
 • Mechanical fatigue (especially with plastics)
 • Exceeding material limits, mechanical failures
• **Background**
 - Altitude, Pressure, Vacuum
 - Absolute vs. Gauge Pressure

• **Define environment (shipment and end use)**
 - Usually tested to ~14,000 feet elevation equivalent
 - Most aircraft cargo is pressurized to ~8,000 feet
 - Applicable for sealed volumes, potted parts

• **Common tests**
 - 1-hour duration to high and low temperature / pressure
 - Cyclic testing at temperature extremes
 - Operational testing (reduced convective cooling)
 - ASTM D6653, IEC 60068-2-13, MIL-STD-810

• **Common results**
 - Expanded/imploded parts
 - Unit overheating
• Background
• Fluid Submersion
 • High pressure (often at depth)
 • Low pressure sometimes performed
 • Consider operating the EUT
• Fluid Submersion + Temperature
 • Hard-freeze
 • Temperature extremes (non-freeze)
• Test Standards
 • IEC 60529
• Common Issues / Results
 • Water enters, EUT fails (usually electrical)
Thermal Shock by Water Spray

- Background
- Water Spray
 - Heat EUT to maximum operating temp
 - Usually +50°C to +60°C
 - Spray with cool water
- Test Standards
 - IEC 60529, ASTM G154
- Common Issues / Results
 - Water ingress
 - Implosion of parts
- Variations
Summary & Parting Thoughts

• Start by defining the environment
 • Establish acceptance criteria
• Test to single environmental inputs
 • Address failure modes
• Test combined environment inputs
• Expect to have findings & opportunities for improvement
• Don’t forget product shipping!
Any Questions
About WESTPAK, Inc.

Two Locations:

San Jose Laboratory
83 Great Oaks Boulevard
San Jose, CA 95119
408-224-1300

San Diego Laboratory
10326 Roselle Street
San Diego, CA 92121
858-623-8100

www.westpak.com
projects@westpak.com
Next Webinar

May 15, 2014
Life Science: Medical Device Packaging
Test Specifications Update and Review
Thank You!

Please feel free to contact us with any questions or assistance with your product reliability testing needs.

Mike Brown
mike@westpak.com

Herb Schueneman
herb@westpak.com

webinar@westpak.com