Agenda

- Why do product reliability testing?
- Prior to testing
 - Define the product’s environment
 - Design & materials considerations
- Test Technologies
 - Temperature, Shock, Vibration, Mechanical Cycling etc.
 - Test parameters and standards
 - Typical results
- Conclusions and Questions
Why Test?

- Reliability: Ability of the product to meet design criteria
- Products will see many hazards throughout their life
 - Indoor/outdoor environment
 - Rough usage and handling
 - Operating conditions
 - Shipment and installation
- Regulatory Requirements
- Customer Satisfaction, Warranty, Liability
Things to consider prior to testing

- Design for reliability
 - Reference existing solutions
 - Thermal expansion
 - Material compatibility
 - Hardware torque/thread locker
 - Production process control
- Regulatory Requirements
 - Safety (Optical, Noise, Mechanical, Electrical, Fire)
 - Product Effectiveness
Establishing the test plan

- Design of Experiment (DoE)
 - Characterize environments EUT will see
 - Define test inputs to cover all environments
 - Think about combined environments
 - Remember shipping (often most severe)
 - Determine acceptance criteria / inspections
 - Start small (EVT, DVT, Final Production)
 - Test temperature and mechanical handling
 - Test to level vs. testing to failure
Every product has different requirements
Test inputs will be covered
 • Temperature, Humidity, Altitude
 • Mechanical Drop, Shock, Vibration
 • UV Light, Salt Fog, Water Spray
 • Mechanical Characterization, Cycling
 • Solvent, Scuff Testing
Sample EUT
 • Laptop Computer
• Define temperature range
 • Operating, storage, shipment
 • Heat rejection, temperature rise
• Test profiles
 • Static, cyclic and shock profiles
 • Run unit stress tests
 • ASTM D4332, IEC 60601-1, IEC 60068-2-X, MIL-STD-810
• Common issues / results
 • Thermal expansion issues
 • Exceeding material limits, mechanical failures
Temperature / Humidity

- Define environment
 - Units are in % Relative Humidity (% RH)
 - Indoor, outdoor, shipment
 - Dew point and condensation
- Common tests
 - Shipment / outdoor (tropical, desert, freezing)
 - Indoors (nominal 4 point test)
 - Stress tests (Damp Heat, Humidity Freeze)
 - ASTM D4332, IEC 60068-2-X, MIL-STD-810
- Common Issues / Results
 - Oxidation / Corrosion
 - Electrical problems (often caused by condensation)
• Altitude, Pressure, Vacuum
 • Define environment (shipment, end use)
 • Usually tested to ~14,000 foot equivalent (meters, mBar or Torr)
 • Most aircraft cargo is pressurized to ~8,000 feet
 • Only applicable for sealed volumes, potted parts
 • Common tests
 • 1 hour duration to high and low pressures
 • Cyclic testing at temperature extremes
 • ASTM D6653, IEC 60068-2-13, MIL-STD-810
 • Common results
 • Expanded/imploded parts
Freefall Drop / Impact

- Define environment
 - For most handheld products waist height
- Test parameters
 - Number of drops
 - Face, edge, corner
 - Height and impact surface
- Test Standards
 - IEC 60601-1, IEC 60068-2-31, MIL-STD-810
- Common Issues / Results
 - Cracking, breakage, cosmetic damage
Mechanical Shock

- Damage Boundary Curve
 - Critical acceleration / velocity change
 - Waveform selection (half-sine / trapezoid)
- Typical Test
 - Half-sine duration (0.5ms – 18ms)
 - Peak G level (20-100G’s)
 - X, Y, Z axes both directions
- Test Standards
 - ASTM D3332, IEC 60068-2-27, MIL-STD-810
- Common Issues / Results
 - Unsupported / surface mount component failure
• Random vs Sine
 • Resonance Search
 • Use random if possible
 • Shipment and end use environment
• Typical Test
 • 3 hour total duration
 • X, Y, Z axis single direction
 • Suggest flat random profile, EUT operating
• Frequency Domain
 • Transport (1Hz – 300Hz)
 • Bare Product (10Hz – 2,000Hz)
• Test Standards
 • ASTM D3580, IEC 60068-2-6, IEC 60068-2-64, MIL-STD-810
• Common Issues / Results
 • Unsupported / surface mount component failure
 • Critical component resonance / failure
Ultraviolet Light (UV)

• Simulating outdoor sunlight
 • UV range 250nm-400nm
 • UVA (320nm – 400nm) UVB (280nm-320nm)
 • Elevated temperatures (+40°C to +80°C)
 • Materials selection or comparative testing
 • Automotive / indoor weathering

• Typical Tests
 • Florescent bulb vs full spectrum (MH / Xenon)
 • ASTM G151 (general) ASTM G154 (florescent bulb)

• Common Issues / Results
 • Fading, legibility, brittle plastics
• Salt Fog
 • Simulates corrosive atmosphere
 • Good comparative test
 • Others tests (acid, ammonia etc.)

• Typical Test
 • 48 hours of exposure
 • To surface of unit exposed

• Test Standards
 • ASTM B117, IEC 60068-2-11, MIL-STD-810

• Common Issues / Results
 • Corrosion of metals / uncoated parts
• Water Spray
 • Spray (level of severity, duration)
 • Submersion (specify depth)
• Mechanical
 • Fingers to dust
 • Mechanical hazards / live parts
• Test Standards
 • IEC 60529
• Common Issues / Results
 • Water: Results by weight, water gets in!
 • Mechanical: Pinch points or shock hazards
Mechanical Cycling

- Any moving component
 - Hinges and switches
 - Mechanical buttons
 - Touch screens
 - Connector insertion/removal

- Typical Test
 - Define number of cycles
 - Define cycle force, speed, duration
 - Inspect periodically
 - By hand or by machine

- Test Standards
 - Various

- Common Issues / Results
 - Quick wear out
 - Change in actuation or insertion/removal force
Define all mechanical inputs
- Insertion or removal Force
 - Tensile / compression
 - Torque
- Bend / twist
Test standards
- Various
- Specify min/max force, test speed
Common Issues / Results
- Are results acceptable to user?
• Steel ball
 • Many sources of impacts
 • Ball diameter / drop height
• Hail
 • Terrestrial at terminal velocity
• Test Standards
 • IEC 60601-1, IEC 60950-1, UL 2218
• Common Issues / Results
 • Mechanical damage, cosmetic damage
• Common solvents
 - Coffee, Cola, Sunscreen, Nail Polish Remover, Rubbing alcohol, hair spray, WD-40, gasoline, hand lotion, hand sanitizer, water, salt water.

• Typical Test
 - Apply and remove solvent many times
 - Soak EUT in solvent

• Test Standards
 - IEC 60601-1, IEC 60950-1

• Common Issues / Results
 - Paint, coating, plastic, metal damage or reaction
Other Test Parameters

• Typical input vs. worst case scenario
• Unique combined environments
 • Temperature / vibration
• Operating Inputs
 • High / Low Voltage
 • User inputs
• Safety
 • Do safety cut outs work (thermal)
 • Does device fail safely
• Cosmetic, functional, safety
Parting Thoughts

• Start by defining environment and regulatory requirements.
 • Establish acceptance criteria
• Think about design and material choices first
• Start with small portions of the test plan
 – Test as early as possible, expect to have findings
 – Take corrective action before finalizing tooling
• Don’t forget you have to ship it!
Questions
About WESTPAK, INC.

• Founded in 1986
• ISO 17025 accredited lab by A2LA
• Product and Package Testing
 • Dangerous Goods Packaging, Materials, Cold Chain

Two Westpak Locations

San Jose Laboratory
83 Great Oaks Boulevard
San Jose, CA 95119
408-224-1300

San Diego Laboratory
10326 Roselle Street
San Diego, CA 92121
858-623-8100

www.westpak.com
Projects@westpak.com

©2013, Westpak, Inc. 23
Thank You

Please feel free to contact us with any additional questions or assistance with your product reliability testing needs.

Mike Brown
mike@westpak.com

Herb Schueneman
herb@westpak.com