What is “Packaging Dynamics”?

- The term “dynamics” implies motion
- “Package motion” or “package movement” is generally related to:
 - manual handling (drops)
 - mechanical handling (impacts)
 - transportation (vibration)
 - stacking (compression)
History

- Pre 1950’s: Trial & Error
- Cold War & the Polaris Missile Program
- Adm. Rickover’s nuclear navy & Mil Specs
- Firestone Engineering Labs
 - Research Inc.
 - MRL
 - Mil Specs
 - MSU School of Packaging
 - MTS-Monterey
 - Lansmont
 - Damage Boundary
 - Five Step Procedure
 - 6-Step
 - Optimized Protective Packaging
History
History
History

Adm. Hyman Rickover
History
History

Mechanical Shock Test Machine
History
History

Front Cover of
The original Newton
Paper sponsored by
Monterey Research
Laboratories
History

• The “cookbook”....
• ASTM D3332 – Damage Boundary Test Method
• 5-Step Procedure for Protective Design & Testing
• 6-Step Procedure for Protective Design & Testing
Packaging Schools now at:

- Mich. State University
- Rochester Institute of Technology (RIT)
- Clemson State University
- Rutgers University
- Stout State University
- San Jose State University
- California Polytechnic University
- Florida State University
Today……

- The process for “Optimized Protective Packaging” works well
- About eight universities teaching this in the U.S.
- OPP is being incorporated into the “Supply Chain” concept to optimize the entire cost of “Quality Delivered”
- Today’s Global Economy demands this type of approach
- Those who incorporate this concept will likely succeed, those who don’t, won’t…..
- It all starts with OPP and a good knowledge of PACKAGING DYNAMICS!!
Overview

Vibration
- Frequency
- Random
- Sinusoidal
- Resonance

Shock and Drops
- Acceleration
- Equivalent Freefall Drop Height

Compression
- Peak Force
- Deflection
• **Single Degree of Freedom (SDOF) spring mass system**

 - **Mass**: Mass of spring mass system
 - **Damping**: Makes the spring mass system stop moving (desirable)
 - **Spring**: Causes the spring mass system to return to its natural position
 - **Cushion**: Damping + Spring
 - **Unyielding Surface**: Vibration table, vehicle exerting vibration, shock table, and drop impact surfaces
• We live in the time domain
• Everything we experience is with relationship to TIME
• We are used to seeing equations, graphs, and data in the time domain
 – Miles / hour
 – TIME it takes for an event
 – Shock pulse DURATION
 – Cycles per SECOND
Shock (mechanical) Terminology

- **Shock** = a sudden non-periodic excitation of a mass characterized by:
 - A sharp rise in acceleration
 - Followed by a decay (deceleration)
 - Over a discrete time period
 - Often described as a “PULSE” (defined shape)
Shock (mechanical) Terminology

Amplitude is typically in G’s

$V_{\text{peak}} = \text{Max acceleration}$

$t_r = \text{rise time}$

$t_f = \text{decay time}$

$t_d = \text{pulse duration}$

$t_d + t_{\text{sag}} = \text{period}$

Half sine Trapezoid Sawtooth
Shock (mechanical) Terminology

• **MASS**: A physical property indicating the acceleration resulting from a given force.
 - \(F = MA \) (Newton’s second law); Therefore \(M = F/A \)

• **STRAIN**: Deformation per unit length.

• **STRESS**: Force per unit length.

Importance: Pkg Dynamics involves the study of Spring/Mass Systems. Per the above, a “mass” involves a force in some defined acceleration environment, in our case, this is the acceleration due to gravity.

A “spring” is anything that displays a strain (deformation) when subjected to a stress.
DISPLACEMENT:
A vector quantity describing the change of position of a body and usually measured from a position of rest. Units: in, mm, m, etc. It is the integral of velocity.

VELOCITY:
A vector quantity describing the time rate of change of displacement of a body in relation to a fixed reference point. Units: in/s, m/s, etc. It is the differential of displacement with respect to time (how fast displacement changes) and the integral of acceleration.
ACCELERATION:

- A vector quantity describing the time rate of change of velocity of a body in relation to a fixed reference point.
- It is usually expressed in G's which are multiples of the gravitational constant.
- Units: in/s/s, G’s (multiples of Earth’s gravitational constant = g = 386.4 in/s²), m/s/s (m/s²)
- It is the differential of velocity with respect to time (how fast velocity changes)
Typical Shock / Drop Pulse

![Graph showing typical shock and drop pulse with axes labeled: Duration (d) on the x-axis, Deceleration (G's) on the y-axis, and Velocity Change (ΔV) as shaded area. The graph has a peak deceleration of 50 G's and shows the relationship between duration and deceleration over time.]
Vibration Terminology

The oscillation of an element of a mechanical system about a fixed reference point.
Vibration

• Unavoidable – Always occurs in the distribution environment
 – Vehicle input
 – Continuous event
 – Fatigue damage

• Two types
 – Random
 – Sinusoidal (Sine)
Vibration Types

Sinusoidal Vibration
- Laboratory Environment
- Excites one frequency at a time
- Usually for product and reliability testing

Random Vibration
- Real World Environment
- Excites all frequencies at a time
- Usually for packaged and distribution testing
Sinusoidal Vibration Parts

- **Period (p) or Cycle**: $2d = p$
- **Duration (d)**
- **Amplitude**: $1/f = p$ & $1/p = f$

Graph showing amplitude, duration, and period with corresponding equations.
Frequency (Vibration)

• An expression of the number of times that a repeated event occurs per second. This is often described in cycles per second or “Hertz” abbreviate Hz.
 – With relationship to vibration
 • 1 cycle is 1 up and down motion
 – Examples:
 • 1 Hz means 1 cycles per second
 • 100 Hz means 100 cycles per second
 – Each cycle has a duration of 1/100 sec
Spectrum (Vibration)

• Definition
 – A frequency domain representation of a time domain event
 – Inverse of the time domain

• All lab vibration data is viewed using a spectrum for vibration
QUESTIONS??
• Single Degree of Freedom (SDOF) spring mass system with *Measured Response and Controlled Input*

- **R** Measured Response of the spring mass system.
- **I** Control input of either the shock table or vibration table
Inputs and Response Measurements

SHOCK INPUT

CUSHIONED PRODUCT RESPONSE

G's

TIME
Shock Input and Response
Vibration Amplification (Q)

• The unit-less ratio of response with relationship to input that is calculated during vibration.
 – May represent: Displacement, acceleration, velocities

\[Q = \frac{R}{I} \]

- \(Q \) = Amplification
- \(R \) = Response
- \(I \) = Input
Resonant (Natural) Frequency

• The frequency at which a spring-mass system displays its maximum amplification (and response)
• A graph depicting the dimensionless ratio of response amplitude of a system with relationship to the input amplitude
Transmissibility Plot

1:1 Coupling
- Response = Input
- Q = 1

Amplification
- Response > Input
- Q > 1
- Damage occurs

Attenuation
- Response < Input
- Q < 1
- Vibration protection
Drop Terminology

A single *uncontrolled* collision of one mass with a second mass
Recall that:

VELOCITY CHANGE (ΔV):

- The difference in system velocity magnitude and direction from the start to the end of a shock pulse.
- The magnitude may be determined from the integral of the acceleration versus time signature.
- May be “conceptualized” as the momentum dissipated during the shock event.
- The integral of the acceleration vs time waveform
- Equals $(1+e) (2gh)^{1/2}$ where:

 $e = V_r/V_i$, $g =$ acceleration of gravity, $h =$ freefall drop height
This means that we can determine an equivalent drop height associated with a shock pulse (waveform) IF we can estimate “e”, coef of restitution.

We know that: \(\Delta V = V_i - (-V_r) = V_i + V_r = (1+e) (2gh)^{1/2} \)

Solving for drop height: \(h = (\Delta V)^2 / (2g) (1+e)^2 \)

We also know that: \(0 \leq e \leq 1 \) [Often (e = 0.5) is used as an estimate]

So, the effective freefall drop height (EFFDH) can be estimated from the velocity change of a shock pulse and an estimate of e.
Our Friend “Velocity Change”

Practical Example:

48G, 9 ms half sine pulse:

\[
\text{EFFDH} = (\Delta V) = (1+e) (2gh)^{1/2}
\]

\[
(\Delta V) = (A_p) (T_e) = (G) (g) (\text{dur}) (\text{factor}) = (48G's) (386.4 \text{ in/s}^2) (.009 \text{ s}) (2/\pi) = 106 \text{ in/s}
\]

Therefore: \[h = (\Delta V)^2 / (2g) (1+e)^2\]

\[= (106 \text{ in/s})^2 / (772 \text{ in/s}^2)(1.5)^2 = 6.5 \text{ inches}\]
Compression Terminology

The ability of a material or structure to withstand loads tending to reduce size. It is usually measured by plotting applied force against deformation in a testing machine.
Dynamic Compression (with Vibration)
Static Compression Graph Parts

- Peak Force (lbs)
- Deflection

Graph: Force (Lbs) on the y-axis and Deflection on the x-axis.
QUESTIONS??
Packaging Dynamics Webinar Series

#1: Overview and Definition of Terms – Jan 2015

#2: Defining & Quantifying the Distribution Environment Through Which All Products Must Travel – March 2015

#3: Determining the Vibration Sensitivity & Shock Fragility of Products; Test Methods, End Results, and Significant Insights – May 2015

#5: Design and Testing of the Protective Package System; How We Know When the Job Was Done Correctly– Oct 2015
Two Locations:

San Jose Laboratory
83 Great Oaks Boulevard
San Jose, CA 95119
408-224-1300

San Diego Laboratory
10326 Roselle Street
San Diego, CA 92121
858-623-8100

www.westpak.com
projects@westpak.com
Please feel free to Contact Us with any questions or assistance with your testing needs.

Herb Schueneman
President & CEO

Edmund Tang
Laboratory Manager

projects@westpak.com